
Word Existence Algorithm

Tejeswini Sundaram

Dept. of Computer Science & Engineering,

Manipal Institute of Technology,

Manipal – 576104, India

tejeswinisundaram@live.com

Vyom Chabbra

Dept. of Computer Science & Engineering,

Manipal Institute of Technology,

Manipal – 576104, India.

vyomchabbra@live.com

Abstract— the current scenario in the field of computing is

largely affected by the speed at which data can be accessed and

recalled. In this paper, we present the word existence

algorithm which is used to check if the word given as an input

is part of a particular database or not. We have taken the

English language as an example here. This algorithm tries to

solve the problem of lookup by using a uniformly distributed

hash function. We have also addressed the problem of

clustering and collision. A further contribution is that we

follow a direct hashed model where each hash value is linked to

another table if the continuity for the function holds true. The

core of the algorithm lies in the data model being used during

preordering. Our focus lies on the formation of a continuity

series and validating the words that exists in the database. This

algorithm can be used in applications where we there is a

requirement to search for just the existence of a word, example

Artificial Intelligence responding to input ,look up for neural

networks and dictionary lookups and more. We have observed

that this algorithm provides a faster search time

Keywords: Lookup algorithm, existence algorithm, hash

function, clustering, collision

I. INTRODUCTION

Development in computer software and applications

continues to be very dynamic. Each software problem

requires different tools and algorithms to solve it effectively

and achieve best results. As a result, we witness the

announcement of new tools and algorithms in quick

succession with multiple updates.

Among these algorithms, there have been various

solutions being provided for solving the look up or word

search problem. It is interesting to note that, though there

seems to be multiple choices for looking up an entity, there

is not one solution which provides optimal results in terms of

both time and space complexity. The algorithms are selected

depending on the nearest problem we require to be solved.

With the help of the currently available software tools,

there are a multitude of desktop and mobile applications that

are being developed on various platforms, be it android, IOS

or windows phone application. Mobile application

development has sprung over all industries and domains,

from e-commerce to food, from health to education, from

gaming to fashion, app development has taken a huge leap.

Every aspect of human life has been effected by mobile

technology and hence there is a requirement for building

much faster responsive applications.

Many of these mobile applications, require a fast and

simple search algorithm to perform their tasks. These

applications are generally light weight in nature and require

simple look-up algorithms that are not time-consuming to

serve their purpose. We can observe that the biggest pain

point for an application is the experience of waiting for a

page to respond or load. There are various reasons for slow

response of applications. Look-up or searching for an entity

in the database is one of the reasons causing this delay.

Other areas where look-up are required is in the

development of artificial neural networks and the initial

stages of an artificial intelligence that respond to input, and

dictionary look-ups. It has been noticed that the major

requirement for all the above applications is fast search time.

The traditional hash function provide a considerable solution

to this problem, but still has certain problems like collision

and clustering.

In this paper, we attempt to provide a simple, yet

effective hash function to solve the problem of look-up for a

word in any database or table data.

II. METHODOLOGY

The search defines a specific storage pattern to work

properly. Once the data is stored in the proper format we can

check if a particular word exists in the list or not. Adding of

new values to this storage type is relatively simple. Data is

stored in form of nested hash tables.

For this explanation: we take around 50000 words in the

English language to be stored (26 possible characters).The

length of a word (n) specifies the no. of levels (l) we need to

store it. Each level will have maximum 26^n hash tables in it

where n is the length of word.

Fig 1. Levels in Hash Table

Each table has 26 inputs with two values stored in it, the

first is for the continuation value and the second one is for

the existence value. These inputs are then connected to a

table of their own on the next level depending on the

continuation value. For example take into consideration this

case when for an input when the continuation value is zero.

This invariably means that no word with such a prefix exists.

Thus we can stop the search here. On the other hand, if c = 1

then we can keep searching and move to the next level in the

Hash table.

Once we reach the last character of the searched word,

we then check for the existence value instead of the

continuation value. If the existence value is 1(true) then the

algorithm returns that the word is valid, otherwise it is

invalid

III. EXPERIMENTAL RESULTS

The above algorithm is advantageous in the terms that it

works very fast with minimal time complexity and exhibits

space overwriting.

For explanation purposes, consider two search words

“bat” and “bath” to be searched in the hash table. The format

of the levels of the hash table is as shown in Figure 2. Note

that the letter ‘c’ depicts the continuation value and ‘e’

depicts the existence value as discussed in the earlier

paragraph.

Here we can observe that the two words ‘bat’ and ‘bath’

are stored in 4 levels. And 3 of the layers are shared by both.

This sharing of spaces can done for any number of

combinations and thus can reduce the total space needed for

storage.

The Word-Existence Algorithm discussed in the previous

section is a based on a simple hash function. It inherits the

features of a uniformly distributed hash function and is an

example of minimal perfect hashing. The problems of

clustering is eliminated by the multi-level hash table model

that has been incorporated. No two characters are stored in

the same bin of the hash table. A separate bin is allotted to all

the 26 characters in the English alphabets. Hence, clustering

and collision has been avoided. Another important feature of

the Word Existence Algorithm is that it allocates a bin

(memory) to the alphabet, only if it is necessary. This way,

memory space has been saved and unnecessary allocations

will be avoided.

Here, we follow a direct hashed model where each hash

value is linked to another table if the continuity for the

function holds true. The data model used during pre-

ordering is the highlight of the algorithm. We have observed

that this multi-hash algorithm provides a faster search time

than the conventional searching techniques with respect to

the applications discussed earlier and the time complexity is

found to be of the order O(1).

IV. CONCLUSION

This algorithm was developed keeping in mind the

application of it in database retrieval and management,

mobile apps, desktop apps and various other projects that

require basic look-up tasks. The algorithm tries to solve the

problem of waiting for a page to load or respond to an event

that has occurred. Look-up in the database is one of the

reasons causing the delay in loading, and by speeding up the

look-up we have intended to speed up the loading process.

Our experimental results show that, the algorithm is well

suited for applications that require fast and simple look-up

from an existing database. The highlights of the algorithm is

that it is a minimally perfect hash function which has

efficient memory management for simple databases. It is

based on multi-level hashing and is very quick for the

discussed applications.

V. REFERENCES

[1] Knuth, Donald (1973). The Art of Computer Programming,

volume 3, Sorting and Searching. pp. 506–542.

[2] N. Alon, M. Dietzfelbinger, P.B. Miltersen, E. Petrank, and

G. Tardos. Linear hash functions. Journal of the ACM,

46(5):667–683, 1999.

[3] N. Alon and M. Naor. Derandomization, witnesses for

Boolean matrix multiplication and construction of perfect

hash functions. Algorithmica, 16(4-5):434–449, 1996.

[4] . K. Mehlhorn. Data Structures and Algorithms 1: Sorting and

Searching. Springer Verlag, 1984.

[5] http://en.wikipedia.org/wiki/Hash_function

[6] Peter Kankowski. "Hash functions: An empirical

comparison".

http://en.wikipedia.org/wiki/Hash_function

